
Quantified Prestige Documentation
V0.03

Michael Hrenka

2015-09-04

General notes:

• Feel free to contact me (radivis@radivis.com) if you notice a mistake or have a
suggestion how to improve any part of this documentation.

• Terms which refer to specific parts of the Quantified Prestige system are written
capitalized. This serves to distringuish them from the more general everyday
meaning of the respective non-capitalized words.

• There is a Discourse forum that I’ve set up in 2015 which can be used to discuss the
details of Quantified Prestige. Please check out the “Digital Abundance Network”
category of the Fractal Future Forum.

• This documentation is distribiuted under a CC BY 4.0 license.

Contents

I. What is Quantified Prestige? 4

II. What is Quantified Prestige good for? 4

III. How does a Qualified Prestige Network work? 5

1. A few comparisons 5
1.1. Comparison between QP and budgets . 6
1.2. Comparison between QP and karma systems 6
1.3. Comparison between QP and Klout . 6

1

mailto:radivis@radivis.com
http://forum.fractalfuture.net
https://creativecommons.org/licenses/by/4.0/

IV. Quantified Prestige Light 7

2. Esteem 7
2.1. Automatic EP Reallocation . 9

2.1.1. Simultaneous Automatic EP Reallocation 10

3. Prestige 12
3.1. Trust . 12
3.2. Prestige Computation . 12

V. Quantified Prestige - Full Version 14

4. Esteem 14
4.1. Default System . 14
4.2. Advanced System . 15

4.2.1. Subtypes of allocated EPs . 15
4.2.2. User Circles . 16
4.2.3. Splitters . 16
4.2.4. The general concept of an Allocator 17

4.3. User defined Esteem Points . 17
4.4. The Esteem Matrix . 17

5. Trust 18
5.1. Trust Scores, Trust Levels and Trust Factors 18
5.2. The Native Trust System . 19

5.2.1. Top Trust . 19
5.2.2. Esteem Trust . 20

5.3. Using External Trust Systems . 22

6. Prestige 22
6.1. Received Esteem Points . 22
6.2. Spread Factor . 22
6.3. How the Prestige Score is calculated . 23
6.4. Why your Prestige doesn’t depend on the Prestige Scores of your sup-

porters directly. 24
6.5. Prestige dependent Prestige computation 25

VI. Prestige Guided Applications (PGAs) 26

7. Electronic Currency Distribution Funds (ECDFs) 26
7.1. How does an ECDF work? . 27
7.2. Who pays for the Fund and what is it good for? 28

2

8. Fluido Currencies (FCAs) 29
8.1. The discrete system . 29

8.1.1. Demurrage . 30
8.1.2. Evaporation . 31
8.1.3. Adjusting the timescale . 32
8.1.4. Problems of the discrete system 32

8.2. Continuous system . 33
8.2.1. Getting to the basic temporary Fluido formula 33
8.2.2. The basic global Fluido formula 35
8.2.3. Fluido computation with evaporation 37
8.2.4. Continuous Fluido transfer: Inflows and Outflows 37
8.2.5. Event times . 38
8.2.6. Final Fluido formulas . 40

9. Prestige Polls 40

VII.User Interface 41

VIII.Appendix 42

A. Reasoning behind reputation economies 42

B. Possible issues of Quantified Prestige 44
B.1. Wealthy participants could simply buy Prestige 44
B.2. Celebrities and widely popular persons are favored in this system 44
B.3. General popularity doesn’t mean that someone or something is actually

good . 45
B.4. This system could favor already wealthy persons 45
B.5. Minorities could be discriminated against 45
B.6. Multiple user accounts per person could distort Prestige Scores 45
B.7. Fluido is just another ”fiat currency“ that’s backed by nothing 45

C. Where do these ideas come from? 46

3

D. License 47

Part I.
What is Quantified Prestige?

Quantified Prestige is basically a rewarding system. Users of a Quantified Prestige
Network (QPN) can reward others for appreciated actions or behavior by giving them
Esteem Points (EPs). Those Esteem Points are then used by the network to compute
a positive reputation index, the Prestige Score (P), for each user. By default, the
Prestige Scores of all users can be seen publicly.

Those publicly visible Prestige Scores provide the basis for a reputation based econ-
omy. So called Prestige Guided Applications (PGAs) can expand the system, for
example by coupling Prestige Scores with digital currencies like Bitcoin, or the native
Fluido (F) currency which is generated through Prestige. So, Quantified Prestige is ac-
tually a hybrid reputation/money system. It can act as building block for an economic
system which is much more flexible and universal than the current monetary system.

Part II.
What is Quantified Prestige good for?

A Quantified Prestige Network has the purpose to allow its users to reward other users.
There are some different types of rewards:

1. Appreciation: It’s nice to get Esteem Points from others, because that shows that
you are appreciated in some way. Prestige is more valuable than points in karma
systems like those on Reddit, because Prestige is harder to get, due to the fact
that each user can only allocate a limited amount of Esteem Points to others, and
also due to the (optional) trust system.

2. Status : Prestige Scores are publicly visible information, so you can quickly see
which users have high status in a network by viewing a ranking of the user with
the highest Prestige Scores. It’s also very nice to appear on top (or close to the
top) of such a ranking.

3. Trust : When using the native Trust System you can quickly see which users are
probably legitimate users, namely those with high Trust Levels. Only trusted
users are able to profit from being a member of a Quantified Prestige Network.
The native Trust System has the purpose to prevent illegitimate use of the QPN.

4

4. Basic income: By using Prestige Guided Applications which couple Prestige Scores
with payments in a electronic currency, it is very easy to implement a basic income
in that currency for all (trusted) users. In the Fluido currency the basic income
is a native (although optional) element of the system. For basic incomes in other
electronic currencies a Distribution Fund is required from which (trusted) users
are paid in regular intervals. Such Distribution Funds can be financed with a part
of an income stream of an organization, or by donations.

5. Bonus payments : In addition to an (optional) basic income, users can also get
bonus payments in an electronic currency in proportion to their Prestige Scores.
This functionality is the foundation for a reputation based economy.

Quantified Prestige Networks are software based services which can be run centralized
or decentralized. They can be used within certain organizations or be open for all,
globally. In the first case, the QPN is a useful tool for such an organization. In the
latter case, the QPN would represent a global reputation based economic system, or at
least a global reputation system.

Another very interesting use of a QPN is to reward the creators of any kind of prod-
uct, or even whole organizations by allocating Esteem Points to an associated Esteem
Splitter, which forwards and distributes the Esteem Points to the creators of a prod-
uct or the members of an organization. This is much more comfortable than allocating
Esteem Points to individual users.

Part III.
How does a Qualified Prestige Network
work?

A QPN has three basic components and is connected to an arbitrary number of Prestige
Guided Applications (PGAs). As basic components we have:

1. A mechanism for Esteem allocation with which users allocate Esteem Points (EPs)
to other users.

2. An optional Trust System which helps to prevent exploitation of the system.

3. The reputation index Prestige (P). The more Esteem Points a user gets from
others, the more Prestige he has.

1. A few comparisons

To get a clearer idea how Qualified Prestige works, let’s compare it with a few similar
systems: A budget, karma systems, and Klout.

5

1.1. Comparison between QP and budgets

Imagine you set up a household budget: You determine how much you spend within a
month in different areas, say food, clothes, transportation, entertainment, and so on.
Because you have a limited amount of money to spend you need to get clear about
your priorities and allocate your money to those different areas accordingly. If you are
unhappy with your current budget, you can reallocate your funds to areas which are
more important to you, but you have to spend less on some selected other areas in
compensation.

In a QPN you have a fixed amount of Esteem Points which you can allocate to different
network users, products, or organizations you like. Similarly to your household budget
you can reallocate your Esteem Points at any time. Usually this would mean that some
people who have got some amount of Esteem Points from you get less, and some get
more after the reallocation.

While your monetary income that determines the total size of your houshold budget
may change over time, the number of Esteem Points you can distribute is fixed forever.
Once you have already allocated all of your Esteem Points, you really need to reallocate
some of your EPs if you want to allocate more EPs to someone.

1.2. Comparison between QP and karma systems

Let’s take a look on karma systems like those on Reddit. They roughly work like this:
There is a message board on which users write posts. Other users can upvote or downvote
those posts. The karma score of a user depends on the number of upvotes minus the
number of downvotes that user has got from others for all of her posts. All votes have
the same fixed value, which is usually 1 (or −1 for downvotes).

A QPN could be seen as a more complex version of a positive karma system in which
there are only upvotes. But users have more freedom in a QPN, because they don’t need
to bind their “upvotes” to posts, they can simply give EPs to users they find generally
awesome for any kind of reason. And “upvotes” don’t need to have the same value, but
their value depends on the number of EPs which are allocated to a certain user.

In a QPN the “karma score” is called Prestige (P) and it depends on those Esteem
Point “upvotes”, but also on a few other factors.

1.3. Comparison between QP and Klout

Klout is a service that analyzes your popularity in different social media networks and
compresses that into the Klout Score which is supposed to be a measure for influence.
While Klout collects user generated data from different services to compute the Klout
Score, the Prestige Scores in a QPN only depend on the activity within that QPN.
Because Klout uses a whole lot of data, it is not very transparent how your Klout Score
arises from all that information. Compared to that complexity, your Prestige Score in
a QPN arises in a not too complicated way from the Esteem Points you get, user Trust
Levels and user Distribition Levels.

6

Even though the Klout Score is mainly based on the activity within other social
networks, Klout has its own internal reputation metric, the “+K”, which behaves like
a karma upvote, but is bound to specific areas of expertise. You have a daily quota of
+K points which you can give other Klout users. Just choose an area of expertise that
user has chosen and give your “+K” vote in that area if you think that user is really an
expert in that field. The “+K” has similarities to the EPs you can allocate to users in a
QPN. However, EPs don’t have a daily quota, but simply a global quota which doesn’t
change ever. If your quota is used up, you need to “take EPs back” in order to spend
them on other users.

Part IV.
Quantified Prestige Light

Quantified Prestige Light (QPL) is a simple version of Quantified Prestige that lacks
advanced features. It is intended to be used by small groups of people (no more than
200), who know and trust each other to some degree. Since QPL is a very basic version
of QP, it is easier to understand, so it is explained here before proceeding to the more
advanced Full QP.

The basic idea is that each user of a QPN has a Prestige score that depends on how
much other users in the network esteem that user. If we want a quantifiable Prestige
score, it suggests itself to use a quantified notion of esteem, which is simply called
Esteem and is explained in the next section.

2. Esteem

Now that we are looking for a way to quantify Esteem, let’s take a look at some simple,
but problematic approaches:

The most simple way to quantify esteem is to make it binary: Either you hold
another person in esteem or not. While it is be possible to set up a reputation
system like that, it couldn’t be used to express subtle degrees of approval. To see
why this would be an unreasonable restriction just imagine that you only could pay
a single Dollar bill to any person ever, no matter what you buy from that person,
whether that’s a car or a single apple. Clearly, it’s not possible to build a smoothly
working economy on such a basis.

Motivation 1: Quantifying esteem - binary

7

Now what if users could rate other users like you can rate products on many websites
- on a scale between 1 and 5 stars? The problem with that approach is that getting
anything less than 4 stars would feel rather bad, making “micropayments” of esteem
rather awkward. Getting some esteem should be seen as better than getting none,
but in a “rating” framework that won’t work well.

Motivation 2: Quantifying esteem - “ratings”

So, what about giving points to other users? Let’s for a moment imagine that each
user could give an arbitrary number of “esteem points” to other users, and that
there is no limit to the number of esteem points that each user can give away, and
that each point counted for as much as each other point. Such a scheme would
soon lead to massive inflation of these esteem points, since users would constantly
outcompete others with respect to their “esteem influence” by giving away higher
and higher amounts of esteem points. That would make the system more than
useless!

Motivation 3: Quantifying esteem - unlimited points

In Quantified Prestige Light each user has a limited number of Esteem points (EPs).
The default number η of EPs is 12000. This is a fixed quota which acctually doesn’t
change over time! The only thing that a user can do with EPs is to allocate them to
other users, and to take them back again at any time when desired. When another user
allocates EPs to you, these points do not increase your own number of EPs which you
can allocate to others - the EPs you got from the other user remain in her possession
and can be taken back again at any time. In other words: You can only allocate your
own EPs, not the EPs you receive from others. You also cannot allocate EPs to yourself!
It is not possible to trade EPs in any way that allows one user to get more (or less) EPs
to allocate.

8

It’s a big number (it’s over 9000!) that has great divisibility properties. Consider
that

12000 = 12 · 103 = (22 · 3) · (2 · 5)3 = 25 · 3 · 53

can be divided by

2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 25, 30, 32, 40, 48, 50, 60, 75, 80, 96, 100, 120,

and larger numbers. If there are 120 people in your QPL besides you and you feel
egalitarian, you could simply allocate 100 EPs to each of them. Afterwards you can
still take back some EPs from people you don’t esteem very much and reallocate
them to users you hold in really high esteem.

Rationale 1: Why 12000?

There are two basic types of EPs allocated EPs and unallocated EPs, and to-
gether they should add up to 12000, or whatever the value of η in the actual system
implementaion turns out to be. Common sense tells us that you should only be able
to allocate unallocated EPs. Allocated EPs are “used up”, so to speak. However, you
can unallocate allocated EPs at any time, so they become new unallocated EPs which
you can spend freely. In many cases this would be quite bothersome, so the system can
bypass this necessity to unallocate EPs manually via automatic EP reallocation, which
is explained in the following subsection:

2.1. Automatic EP Reallocation

Assume you have allocated 100 EPs to user X and you want to increase that number
to 1000 EPs. Further assume that you happen only to have 500 unallocated EPs left. If
you don’t want to unallocate the missing 400 EPs manually from someone, automatic
EP reallocation will come to the rescue. What happens is that the 400 missing EPs will
be unallocated from the whole of all users you are currently allocating EPs to, except
from user X. Each user will lose the same fraction of EP she gets from you.

How is that fraction calculated? First note that you have 11500 allocated EPs. You
already allocate 100 EP to user X, and he’s not supposed to lose anything, so we need
to see what happens to the 11400 EPs that you allocate to other users. At the end
these users will need to share 12000− 1000 = 11000 among themselves, because then X
will get 1000 EPs. So, the fraction of EPs that each of those other users will retain is
%α = 11000

11400
≈ 96.5% and is called the reallocation factor. In other words, each of them

will lose the fraction 400
11400

, or about 3.5% of her former EPs. In general, this fraction
could be characterized as “missing EPs” / “total old EPs of other users”.

9

2.1.1. Simultaneous Automatic EP Reallocation

There’s also the possibility to allocate different amounts of EPs to many different users
simultaneously. Also in this setting there’s automatic reallocation. You can set the
new desired EPs of some selected users. In fact, you can set the new EP count to the
old EP count if you want that the Esteem of that selected user doesn’t change through
automatic reallocation. Only EPs from unselected users will be taken. Each unselected
user will lose the fraction “missing EPs” / “total old EPs of unselected users” of her EPs.
Here, the “missing EPs” are the total sum of the newly set EPs for the selected users
minus the sum of the EPs those users already get from you and minus the unallocated
EPs you happened to have left at the beginning.

To formalize this matter, let’s introduce some notation. Each user has a user id
number, and we call the user with the user id i simply “user i” for brevity. Let Ei

be the number of EPs you allocate to user i at the moment and Ěi the number of
EPs user i will get from you after automatic reallocation. Note that the i’s on top
are upper indexes and not exponents! Upper indexes always denote values related
to other users in QP, while lower indexes refer to values associated with the users
themselves. For each selected user with id j you choose a number Ej

new of EPs.
Collect all the id numbers of unselected users in a set U and the id numbers of
selected users in a set S. Finally, let E0 be the number of unallocated EPs you have
at the beginning. When we define the EP difference value

~E =
∑
j∈S

Ej
new −

∑
j∈S

Ej =
∑
j∈S

(Ej
new − Ej),

then the general automatic reallocation formula is:

Ěi =

Ei , if i ∈ U and ~E ≤ E0(

1− ~E−E0∑
j∈U Ej

)
Ei , if i ∈ U and ~E > E0

Ei
new , if i ∈ S

It’s clear that the only really interesting thing that happens is that the values Ei

for i ∈ U get multiplied with the reallocation factor

%α = 1−
~E − E0∑
j∈U Ej

,

if ~E > E0, that is if you don’t have enough unallocated EPs left, so that real
automatic reallocation is required.

Shiny Formula 1: EP Reallocation Formula

10

The general formula will be exemplified in this simple example, which is illustrated
by the following table:

i Ei Ei
new Ěi

1 2000 − 800
2 3000 − 1200
3 1500 1500 1500
4 2500 2500 2500
5 1000 2000 2000
6 0 4000 4000

How were the values 800 and 1200 in the top right calculated? The users 1 and 2
were unselected, so their EPs were multiplied by the reallocation factor %α which
we need to compute. First, we calculate the EP difference value

~E =
∑

j∈{3,4,5,6}

(Ej
new − Ej)

= (1500− 1500) + (2500− 2500) + (2000− 1000) + (4000− 0)

= 5000.

At the begining there are 10000 allocated EPs, so there are

E0 = 12000− 10000 = 2000

unallocated EPs. And since∑
j∈{1,2}

Ej = 2000 + 3000 = 5000,

the reallocation factor is

%α = 1−
~E − E0∑
j∈U E

j
= 1− 5000− 2000

5000
=

2

5
= 40%,

which is the factor that 2000 and 3000 need to be multiplied with to get the values
800 and 1200.

Example 1

11

Automatic reallocation has the “side-effect” that the EPs a certain user gets from
you tend to decline after a while with this system, which reflects the fact that
popularity slowly fades, unless it gets “refreshed” regularly. So, you would need to
renew your EPs for that user from time to time, if you want him to have a relatively
large fraction of your EPs - unless you use the advanced features of the Full version
of QP, or you don’t use the automatic reallocation system at all.

Comment 1: Fading Esteem as Side Effect of Automatic Reallocation

3. Prestige

Now that we know how Esteem works in QPL understanding Prestige is simple. The
Prestige score of a user is basically the sum of all EPs he gets from other users. There’s
only a little issue of reputation systems that needs to be addressed first:

3.1. Trust

In reputation systems there’s the danger of Sybil attacks, in which a single person would
create many different user accounts in order to gain more influence or even reputation
in the system. Quantified Prestige addresses this problem by introducing the concept of
Trust. In the Light version the concept is binary: A user is trusted or not, and there’s
nothing in between. What is meant with “Trust” is the situation that a user is believed
to be a real person who is not trying to exploit the system with Sybil attacks or other
illegitimate manipulations.

A user gets trusted by registering on the QPL network and then getting trusted by
an adimnistrator of that network. This mechanism assumes that new users are known
by at least one adimnistrtator, or that users are able to verify their identity in a more
objective way, for example by using an already relatively trustworthy online identity,
like a Google or Facebook account.

The set of all registered users is partitioned into a set of trusted users T1 and a set
of untrusted users T0. Therefore, the term “i ∈ T1” means that the user with id i is
trusted.

3.2. Prestige Computation

12

http://en.wikipedia.org/wiki/Sybil_attack

Let the number Ei
j denote the Esteem Points that user j allocates to user i. The

Prestige score Pi of user i is then:

Pi =

{ ∑
j∈T1

Ei
j , if i ∈ T1

0 , if i ∈ T0

Note that Ei
j defaults to 0 when it is not defined (by user j), or if j = i. That

means user i can’t allocate Esteem Points to himself in order to get more Prestige.

Shiny Formula 2: QPL Prestige Formula

Untrusted users have neither influence nor Prestige, though they can start allocating
EPs to other users in the hope that they will be trusted soon, so that these EPs become
effective.

And that’s already the whole QPL system. It’s designed to be easy to understand.
The user won’t get confused by the more advanced concepts and features of the Full
version of QP.

Prestige scores have interesting applications, and since QPL provides Prestige scores
they can be used by Prestige Guided Applications, which are described in the part after
the next part.

So, if the Light version of QP suffices for interesting applications why even bother
with the Full version at all? There are a couple of reasons:

1. The Full version has advanced features that provide better control over the
automatic EP reallocation mechanism.

2. It enables much finer and more comfortable control of EP allocation.

3. This finer system can also be used to allocate EPs to whole groups of users,
for example the creators of a certain product.

4. The Full version of Quantified Prestige is optimized for large networks.

5. Users are incentivized to allocate EPs to a large number of other users.

6. The Trust system of the Full version is much more sophisticated and flexible
than that of the Light version.

Rationale 2: Why the Full Version of QP is Awesome

13

Part V.
Quantified Prestige - Full Version

If you have skipped the previous part of this documentation please read it now, because
this part assumes familiarity with the Light version of Quantified Prestige.

4. Esteem

The basics of Esteem Points are the same as in the Light version: Each user has a
total of η = 12000 (default value) Esteem Points and can allocate them to other users,
as well as taking them back at any time. What’s different is that there’s an optional
advanced EP system which enables finer control over automatic EP reallocation, and
that EP allocation in general is made much more flexible with different kinds of so-
called allocators.

—
Each user has a total of η (can be any positive rational number; default: η = 6000)

Esteem Points (EPs) which he can allocate to other users. What’s important is that
the amount of EPs of each user is fixed at η. Nobody can get more EPs or lose some
of them. The only thing you can do with EPs is allocate them to other people (but not
yourself). You can reallocate them at any time you want to. It is not possible to trade
EPs in any way that allows one user to get more (or less) EPs to allocate.

4.1. Default System

There are basically two types of EPs: Allocated EPs and unallocated EPs.
Allocated EPs are those which you have allocate to another user. Unallocated EPs

are those which you haven’t allocated to anyone yet. You can turn unallocated EPs into
allocated EPs by taking some of them and allocating them to another user. Say, you
have 2000 unallocated EPs and allocate 500 of them to the user with ID-number i (in
this example we take the default value η = 6000). Then you have 1500 unallocated EPs
afterwards and 4500 allocated EPs (since they need to sum up to 6000 EPs in total).
Obviously, EPs can be either allocated or unallocated. They cannot be both at once
(unless you somehow use some weird quantum mechanical trick).

You can unallocate some of the EPs that you already allocated to a certain user in
order to get more unallocated EPs. Those can be reallocated to any other user or just
kept idle.

If you want to allocate EPs to a user and you don’t have enough unallocated DPs,
the default option is to take unallocated EPs from all other users proportionally, which
means that each of those users will lose the same fraction of EPs allocated to him. For
example, if you only have 1000 unallocated EPs left and want to allocate 2000 EPs to
a user with ID j, first she gets the 1000 unallocated EPs and then 1000 EPs which you

14

have already allocated. The users which got those allocated EPs had in total 5000 EPs,
but now have to share only 4000 EPs among them. The result is that each of those
users will only have 4000/5000 = 4/5 = 80% left of those of his former EPs which you
allocated to him.

Of course, this automatic reallocation option can be switched off. The reason why it’s
the default option is to eliminate the need for manual reallocation of EPs once (almost)
all EPs are allocated. There’s also the effect that Prestige Scores tend to decline after
a while with this system, which reflects the fact that popularity fades after a while. So,
you would need to renew your EPs for a certain user regularly, if you want him to have
a large fraction of your EPs - unless you use the advanced features, or don’t use the
automatic reallocation system at all.

4.2. Advanced System

4.2.1. Subtypes of allocated EPs

Whenever you give EPs to a participant, you have the option to chose the subtype of
EPs you want to allocate to her. There are three different subtypes of allocated EPs:

1. Stable EPs, which are immune to automatic reallocation.

2. Flexible EPs, which are the default option and behave as described in the pre-
ceding paragraph.

3. Volatile EPs, which are used up first when automatic reallocation happens.

Flexible and volatile EPs are also called unstable EPs, as they tend to be shifted around
a lot, once automatic reallocation of EPs kicks in. The only difference between all those
subtypes is their behavior under automatic reallocation. How that works out becomes
clear when considering some examples.

1. Suppose you have 500 unallocated EPs and 1000 volatile EPs. If you allocate
1300 EPs to a participant, first the 500 unallocated EPs are used up. Still, 800
EPs need to be taken from the allocated EPs in order to make the reallocation
possible. Those EPs will be taken exclusively from the volatile EPs, because you
have enough of them. Your volatile EPs will be reduced to 200 uniformly, which
means that each user which got EPs from you will only have 20% = 200/1000
of those volatile EPs left after the reallocation. Stable and flexible DPs aren’t
touched at all in this example.

2. Let’s imagine that you want to allocate 2000 EPs to a participant in the situation
above. You have 500 unallocated EPs, 1000 volatile EPs and 1500 flexible EPs.
Now, the unallocated and volatile EPs are all used up for the reallocation. This
means that everyone who got volatile EPs from you loses them at once. But you
still need to take 500 allocated DPs in order to complete the transaction. Those are
taken from the flexible EPs, all of which are reduced to 2/3 = (1500− 500)/1500

15

of their former value. So, you will have 1000 of those previous flexible EPs left.
Again, your stable EPs remain untouched by this transaction.

3. In the situation of the previous point you cannot reallocate more than 3000 EPs
(as that’s the total of your unallocated and unstable EPs), unless you turn some
of your stable EPs into unstable or unallocated ones.

4.2.2. User Circles

You can create User Circles in order to manage your EPs better. Externally, user
circles are handled exactly as regular users you have in your distribution list, so you
can allocate stable, flexible, or volatile EPs to circles. It’s just that internally a user
group behaves similarly to the distribution list as a whole. Every circle c has ηc (default:
ηc = η = 6000, we will use that default in the following example) internal esteem points,
or IEPs. You can allocate different types (stable, flexible, or volatile) IEPs to the users
within a circle. If the circle gets a certain amount of EPs, those are split up according
to the IEPs. For example, if a circle gets 600 EPs, then a single user within that circle
has 200 IEPs, she will only get 200 · (600/6000) = 200 · (1/10) = 20 EPs. The number
“EPs that a group gets” divided by “6000” is the Distribution Ratio of that circle. In
the previous example the distribution ratio was 1/10. So group members will get ”IEPs
· distribution ratio“ EPs.

If automatic reallocation of EPs happens on the global level, the distribution ratio
of your circles will decrease (unless you are actually allocating EPs to that circle, in
which case it will increase). Global automatic reallocation doesn’t mess with IEPs, but
if the distribution ratio of a circle decreases, the EPs every member of that circle gets
allocated from you will also decrease.

Automatic reallocation within a circle works like the regular automatic reallocation on
the global level, as described in the previous subsection, but restricted to the members
of the circle. So, internal automatic reallocation will change nothing outside of that
circle.

Circles are private, in the sense that others don’t see which circles you have created
and in which of your circles they are in (unless you allow them to see that information).

4.2.3. Splitters

It is possible to allocate EPs to Splitters, which behave similarly to user circles, but have
public visibility: Everyone sees all splitters, while only you (and the people you allowed
them to) see your private user circles. The purpose of splitters is to make allocation of
EPs to creators of a single product or to whole organizations more comfortable. A user
who makes a splitter defines an internal esteem distribution with IEPs which behave
like the IEPs in circles. That means that this user determines who gets which share of
the EPs which get allocated to the splitter.

A group who collaborated to create a product can set up a splitter to make it easy
for others to allocate EPs in a fair way to all those who worked on that product. Of
course, that group will need to discuss which distribution is ”fair“ and create a splitter

16

accordingly. Similarly, whole organizations can set up a splitter to give each member a
specifically defined share of incoming EPs.

4.2.4. The general concept of an Allocator

The general distribution list of a user, circles, and splitters all share very similar me-
chanics. All of them can be seen as Allocators, which have the purpose of allocating
incoming EPs to other Allocators, or to users. So, Allocators only have the purpose of
”moving around“ EPs. An EP distribution list of a user is called an Initial Allocator.
The number of allocated EPs of that users go into the Initial Allocators and go out to
User Circles, Splitters, or inidividual users. Each Allocator bundles all the incoming
EPs which get allocated to that Allocator and ”forwards“ them to other Allocators and
users, in proportion to the IEPs that an Allocator or user gets. Those IEPs are defined
by the Allocator Manager(s). Users are always managers of their own Initial Allo-
cator, Circles, and the Splitters they have set up. But they can also grant other users
management rights for specific Allocators. Only the creator of an Allocator can appoint
(or fire) managers of that Allocator. Ordinary Allocator Managers can’t do that.

4.3. User defined Esteem Points

User are not bound to use the default values η or ηc, but use their own numbers η(i) or
ηc(i). In order not to disturb the system by that change, the QPN only takes the ratio
of allocated (I)EPs into account, but publicly displays everything as if it would calculate
with the default values for η or ηc.

4.4. The Esteem Matrix

The most important data of a QPN are the EP relations. Which user allocates how
much EPs to which other users? For two users with IDs i respectively j the variable E ′ji
denotes how much EPs i allocates to j. Esteem allocation is bottom-up in the sense that
EPs go from the lower index to the upper index. Because of the possibility of customized
EP quotas η(i), the system rather calculates with the normed variables

Ej
i :=

1

η(i)
E ′ji .

All those numbers for all users are saved in the quadratic Esteem Matrix E = (Ej
i)i,j

(not to be confused with the identity matrix 1). The i-th row of that matrix shows how
much normed EPs user i gets allocated from other users. The j-th column of the matrix
displays how much normed EPs user j allocates to other users.

This matrix is a compact represenation of the most important data of a QPN, but it
shouldn’t be publicly visible, because it would reveal which user allocates how much EPs
to which other users even if some users prefer to keep their EP allocation pattern private.
If QPN administrators have access to the Esteem Matrix data they should disclose that
fact.

17

5. Trust

There is an issue that makes it rather necessary to include a trust system. If multiple
full accounts per user were allowed, this would pose a couple of problems:

1. A user could create multiple accounts which allocates esteem to each other in order
to get a lot Prestige.

2. That user would have more influence, because he could allocate a real multiple of
η EPs.

Especially the first point is quite critical. If this kind of behavior cannot be minimized,
the system would soon become worthless. Users aren’t supposed to generate Prestige
for themselves directly in that cheap way. The second point is also quite important, but
not so critical.

To prevent the creation of multiple full accounts for a single user or similar schemes
which can be used to exploit the system, a trust system is used. This trust system
consists of

1. A native trust system which generates trust scores only based on data which is
intrinsic to the system

2. Or an external trust system which uses data from outside the system to verify
legitimate users

3. Or both.

5.1. Trust Scores, Trust Levels and Trust Factors

Each users i has a Trust Score T (i) which determines her Trust Level TΛ(i) in the
following way: There is a Trust Treshold Value Tα (default: Tα = 100). If the Trust
Score T (i) is below Tα the Trust Level TΛ(i) is 0, and it’s at least 1, if T (i) ≥ Tα. The
Trust Level always increases by one, if the Trust Score doubles, after having reached the
Trust Threshold Value. So, it’s 2 for a Trust Score of 2Tα, 3 for a Trust Score of 4Tα, 4
for a Trust Score of 8Tα and so on. A closed formula for that is:

TΛ(i) = max

(
0,

⌊
log2

(
2T (i)

Tα

) ⌋)
.

Trust Scores, and therefore also Trust Levels are a measure of trustworthiness. Another
interpretation of trust is that it’s the probability that a user is legitimate and doesn’t
plan to exploit the system. The Trust Factor most closely resembles that probability.
It is computed by the Trust Level of the respective user. Albeit it might more accu-
rate to compute it from the Trust Score directly, this would cause problems with the
computation of Prestige (similar to those mentioned in the last paragraph of the Esteem
Trust section and the section ”Why your Prestige doesn’t depend on the Prestige of your

18

Supporters“). So while a Trust Factor of max
(

0, 1− 1
T (i)

)
might be most reasonable,

the formula this system uses for the Trust Factor TΦ(i) of the user i is

TΦ(i) = 1− 1

2TΛ(i)
.

The Trust Factors are the only variables from the Trust System that factor into the
computation of Prestige Scores directly.

5.2. The Native Trust System

Each user i has a Native Trust Score TN(i). This score has two components:

1. The Top Trust TT (i), which is especially important when the system is young.

2. Esteem Trust TE(i), which is based on the Esteem allocation relations between
users. This component is important in more mature systems.

A user’s Native Trust Score is then simply the sum of her Top Trust and her Esteem
Trust:

TN(i) = TT (i) + TE(i).

5.2.1. Top Trust

This type of trust comes from the top, more specifically the top users. All adminis-
trators of the system are top users. In addition, the ν non-administrator users with the
highest Prestige scores are also top users. (default: ν = 10) With this definition of top
users in mind, top trust is described by a few rules:

1. Every top user gets a bonus of τA to their top trust TT . (default: τA = 6000)

2. The previous bonus is removed once a top user ceases to be a top user.

3. Each top user can grant τΛ top trust to any other user. (default: τΛ = 1000)

4. The respective top user can take that top trust grant back at any time.

5. Also top trust grants from top users disappears once the respective top user loses
his top user status.

6. Top users can start a mistrust petition against any user. If two other top users sign
the mistrust petition, the top trust of the user who is the target of that petition
gets reduced by τV . (default: τV = τΛ = 1000)

7. The malus from a mistrust petition gets removed once one of the signing users
loses top user status or revokes her support of the petition.

19

5.2.2. Esteem Trust

This type of trust is based on the Esteem relations between users. The idea behind
Esteem Trust is ”independent verification“ of trustworthiness. That means that a user
gets Esteem Trust if several ”independent” users deem that user trustworthy. To simplify
matters for users, only the EPs which one user allocated to another user are counted as
indicator of trustworthiness.

For that purpose we consider the Esteem Network consisting of the users of a QPN
as nodes and their non-trivial EP-relations as directed links.

We say that a pair (i, j) of users with IDs i and j are 2-unlinked, iff there is no
path of length 2 or less in the Esteem Network connecting them - any directed links are
treated as undirected links, so the direction of links doesn’t play a role here. For three
users with IDs i,j, and k we say that a pair (i, j) is 2-unlinked up to k, iff there is
no path of length 2 or less connecting them in the reduced Esteem Network without k
(and all links between k and other nodes).

Remark: It is straightforward to define the concept of n-unlinkedness (up to k), but
that is not used in this system. It would be computationally very expensive to check
the Esteem Network for more than 2-unlinkedness, at least for large QPNs.

The idea is that for a user k getting independent verification of trustworthiness means
that there is a pair (i, j) of users, both of whom allocate EPs to k, and who are unlinked
up to k. This makes is very hard for users to get Esteem Trust from clusters of users.
Even though it’s natural to expect getting trust by a cluster, there’s the problem that
clusters could be corrupt and would give out trust to users who shouldn’t be trusted.
Independent verification bypasses that potential problem.

Now, we need a function that translates Esteem into Trust. Given x = Ej
i , what

degree of trust f(x) should that imply? Let’s start with a few sensible demands on the
function f :

1. No Esteem means no Trust: f(0) = 0.

2. Maximum Esteem means maximum Trust, which is set to 1 = 100%: f(1) = 1

3. The function f is non-negative, continuous, and increasing.

4. A doubling of Esteem always should have the same effect, more precisely:

f(2x)

f(x)
≡ c , for a constant number c.

5. Diminishing returns: The gains in Trust decrease with growing Esteem, or math-
ematically: f ′(x) < 0 for all x between 0 and 1.

It is not hard to see that any function of the form

f(x) = xa

20

for a strictly between 0 and 1 suffices all those conditions, with c being 2a. In the absense
of further criteria, the most natural choice for a is the golden middle: a = 1

2
. In this

case the function f becomes:
f(x) =

√
x.

In the spirit of independent verification by pairs of users, let’s make a little thought
experiement and say that k gains Trust, iff i and j are 2-unliked up to k and are
asked independently whether k is trustworthy and they say that k is trustworthy with
probabilities f(Ek

i) and f(Ek
j) respectively. Then the probability that k gains Trust is

simply f(Ek
i) · f(Ek

j). This motivates the following preliminary formula for k’s Trust
Score:

TE,preliminary(k) =
∑

(i,j)∈Uk

√
Ek
i ·
√
Ek
j ,

where Uk is the set of pairs of users who are not k and who are 2-unlinked up to k.
That formula doesn’t consider whether the users i and j are trusted or not. This can

be remediated by factoring in the Trust Levels of i and j. Also the Trust formula should
be proportional to Tα, which makes it irrelevant how high that threshold value actually
is, apart from aesthetical considerations (small Trust Scores could feel disappointingly
low). What really matters is a factor Tε (default: Tε = 100) that determines how easy
it is to get Esteem Trust. These considerations inspire the final Trust Score formula:

TE(k) = TεTα
∑

(i,j)∈Uk

√
Ek
i · TΛ(i) ·

√
Ek
j · TΛ(j).

Trust Levels play a large role when it comes to propagating Trust to others. One issue
that requires some attention is that the Trust Scores of k depend on the Trust Levels
of other users. If the Trust Levels of 2-unlinked users i and j increase, then the Trust
Score of k will also increase, so that k’s Trust Level will increase too, which would mean
that k gives more Trust to others, which may lead to an increase in their Trust Levels
again. So, the system will experience Trust Level update cascades, which may propagate
for a while. But since your Trust Score needs to double in order to gain a Trust Level,
longer cascades are not very likely. Actually, this is the rationale behind the concept
of Trust Levels. If the Trust of k depended directly on the Trust Scores of other users,
the update cascades would be unlikely to stop finally, since Trust could be propagated
in cycles which have no reason for stopping. By introducing quantized Trust Levels and
making them increase very slowly with increasing Trust Scores, the problem becomes
computationally feasible.

There’s a nasty side of Esteem Trust: It can decrease even if nobody decreases the
amount of EPs she allocates to you. The reason for this is that as the Esteem Network
expands and new links are created, it may happen that two users who once where 2-
unlinked up to a user k get connected directly or over a different user l. In that case,
user k won’t get Esteem Trust from that pair of users anymore. So, in order to get
an increasing Esteem Trust Score, you need to get EPs from more and more users who
aren’t already connected to those users you get EPs from already.

21

5.3. Using External Trust Systems

External Trust Systems are systems which operate outside the narrow confines of a QPN.
They can be webs of trust, ID verification services which might even use biometric data,
or any kind of other schemes for trust and identity verification.

For External Trust Systems there are a few different options how they can interact
with a QPN. First of all, it could assign an External Trust Score TX(i) to the generic
user i. That Score can be added to the Native Trust Score TN(i) to arrive at the total
Trust Score T (i) = TN(i) +TX(i). It is also possible not to use the native Trust System.
That is an approach which suggests itself if the External Trust System is highly reliable.
In that situation there are basically three different options for the External Trust System
to interact with the QPN:

• The External Trust System produces the Trust Score TX(i) as mentioned above.

• It determines the Trust Level TΛ(i) directly.

• Or it provides a Trust Factor TΦ(i) without considering things like Trust Scores or
Trust Levels at all.

Of course it’s also totally legitimate to rely on the Native Trust System exclusively.
It’s also possible to set TΦ ≡ 1 in the case that no Trust System is used at all. That’s
an approach which should work best for small community QPNs.

6. Prestige

The reputation index Prestige is a number which is mostly determined by the Esteem
a user gets from others. But Prestige also depends on a few other factors which are
elaborated in this section.

6.1. Received Esteem Points

The Esteem Points another users allocates to you are your Received Eistribution Points,
or REPs. The more Esteem Points you receive, the better.

6.2. Spread Factor

Prestige is supposed to be more meaningful if users Esteem a lot of other users. Other-
wise, if you don’t Esteem many other users, only your top favorites would get EPs and
everyone else gets nothing from you. That’s not really fair, because there are probably
many people which deserve at least some recognition and Prestige. And that’s why
there is an incentive for granting significant amounts of EPs to many different users:
The Spread Factor. For a single user with ID i the Spread Factor is denoted by SF (i)

The Spread Factor is the rounded down square root of the number of users you allocate
at least 20 EPs to, but it’s capped at 10 and won’t grow any further from that point

22

on. So, let n be the number of participants who get at least 20 EPs from you, then your
Spread Factor SF (i) (assuming you have the user-ID i) can be found in the following
table:

n SF (i)(n)
1− 3 1
4− 8 2
9− 15 3
16− 24 4
25− 35 5
36− 48 6
49− 63 7
64− 80 8
81− 99 9
100− 300 10

This looks quite ad-hoc, but it’s not easy to find a really good compromise between
different requirements for a useful Spread Factor:

• It shouldn’t be easy to get a high Spread Factor when allocating only very few
EPs to many other users.

• On the other hand it shouldn’t be too hard to get a reasonably high Spread Factor
with a “reasonable” usage of the QPN.

• You shouldn’t be forced to use a specific EP allocation pattern to get a maximal
Spread Factor.

• The Spread Factor should be transparent in the sense that it’s very easy to see how
it arises from your usage of the system. Using statistical concepts like “variations“
might be fancier, but it would introduce unnecessary complexity, apart from giving
an unreasonable advantage to people who are more into mathematics and statistics.

6.3. How the Prestige Score is calculated

Suppose you get 100 REPs from a user who has a Spread Factor of 5, you have a
Spread Factor of 3, and both of you have a Trust Factor of 1

2
. Then you will get

1
2
· 3 · 1

2
· 5 · 100 = 375 Prestige from that user. So, the Factors of the users you get RDPs

from, as well as your own Factors play an important role in determining the Prestige
you have in the end. Your total Prestige Score is simply the sum of all Prestige points
you get from all users which have allocated EPs to you. To arrive at the Prestige Score
of a user the Prestige points that user gets from other users are simply added up. The
Prestige Formula therefore is

P(i) = ηηTΛ(i) · SF (i) ·
∑
j 6=i

TΛ(j) · SF (j) · Ei
j,

where the sum goes over all users of the QPN other than i, and ηη (default: ηη = η =
6000) is a scaling factor that makes the Prestige Scores conveniently large.

23

6.4. Why your Prestige doesn’t depend on the Prestige Scores of
your supporters directly.

At first, I considered making the Prestige you get from a user depenent on the Prestige of
that user. So, users with a lot of Prestige would be able to grant others lots of Prestige.
You could argue that such a system would be less democratic than the system described
above, and that having a lot of Prestige doesn’t automatically mean that they can esteem
others ”better“ in some way. But there’s also a more basic (less philosophical) reason
why I didn’t use that scheme: It faces some nasty mathematical problems.

To understand the rest of this section, you need some knowledge about a mathematical
discipline called linear algebra.

Let’s say we simplify the formula for the Prestige Score by leaving out the Spread
Factors, Trust Factors and ηη (or setting all of them to 1), but making it dependent on
the Prestige Scores of those users who allocate EPs to you. A sensible approach would
be just to multiply the EPs Ei

j you receive from user j with her Prestige Score Pj and
sum over all users:

P(i) =
∑
j

Ei
j · Pj

For simplicity’s sake the sum goes over all users, which doesn’t change anything, because
Ei
i = 0. Let’s define the Prestige Vector P as (P(i))i, the collection of all individual

Prestige Scores. The equation above can be simplified using the conventions of matrix
multiplication. It simply becomes

P = E · P.

This says nothing else than that P needs to be a fixed point of mapping

Ẽ : RN → RN , v 7→ E · v,

where N is the number of users in the QPN. Therefore, in order to compute the Prestige
Vector P, we need to make sure that there exists a non-trivial solution to this fixed point
problem (obviously P = 0 is always a solution). It would also be very nice if the solution
was unique. For this purpose we can rewrite the formula to

(E − 1) · P = 0,

where 1 is the identity matrix, so 1 · P = P. Therefore, the fixed points we look for are
exactly the elements of the kernel of the linear mapping

T : RN → RN , v 7→ (E − 1) · v.

Because kernels of linear mappings are always linear subspaces, there are an infinite
number of solutions once there is a non-trivial solution which is a really awkward situ-
ation.

But let’s assume we could choose a suitable non-trivial solution. When are there any
non-trivial solutions at all? The kernel of T must be non-trivial, which means that the
matrix E ′ := E − 1 must not have full rank. Or equivalently, the determinant of E ′

24

must be exactly 0. As the product of the entries on the main diagonal of E ′ is 1 or −1
(due to the fact that users cannot allocate EPs to themselves), all other terms in the
determinant formula

det(E ′) =
∏
σ∈ΣN

sign(σ)
N∑
i=1

E
′σ(i)
i ,

where ΣN is the set of all permutations of the set {1, . . . , N}, must sum up to −1,
respectively 1, which almost certainly does not happen.

Consequently, the modified formula usually cannot hold. And even if there is a non-
trivial solution there are infinitely many of them, so we would need to use some additional
criteria to single out the ”most sensible“ one.

It may be possible to get a solution with a suitable manipulation of the Esteem
Matrix, but any manipulation which would suffice for that purpose would distort the
Esteem relations between users to some degree. If it always can be achieved that the
rank of E ′ is N − 1, the space of solutions is 1-dimensional. In that case it would suffice
to choose a solution vector with a desired norm. This produces two solutions, but one
of them contains negative numbers, so it is discarded. However, if the solution space
has higher dimension it would be harder to single out a meaningful solution.

So, the most sensible way to have a system where your Prestige Score depends on
the Prestige Scores of other users is to apply a transformation to the matrix E ′ that
always changes the rank of the matrix to N − 1 and which distorts the Esteem relations
as marginally as possible. However, even then such a scheme would require more com-
putational effort, because after each Esteem transaction the matrix would have to be
transformed and then a set of linear equations would need to be solved.

Nevertheless, there is an easy possibility to use the Prestige data to some degree for
the computation of the Prestige Vector. It is presented in the next subsection:

6.5. Prestige dependent Prestige computation

If you really want Prestige Scores which depend on other Prestige Scores, then you can
actually get that by letting go of the idea of a direct dependence. Instead you introduce
a Prestige Level PΛ(i) for each user. This Prestige Level would be computed from the
Prestige Score P(i) in some way. Then you can take the modified Prestige Formula

P(i) = ηηTΛ(i) · SF (i) ·
∑
j 6=i

PΛ(j) · TΛ(j) · SF (j) · Ei
j.

Similarly to the section about Trust Levels, it would make sense to let the Prestige
Level depend logarithmically on the Prestige Scores, because that reduces the length
and frequency of Prestige update cascades, which simply cannot be avoided in a system
in which Prestige depends on Prestige. A forumula that is similar to the Trust Level
formula might be reasonable:

PΛ(i) = max

(
1,

⌊
log2

(
4P(i)

Pα

) ⌋)
,

25

where the number Pα is the Prestige Level Threshold (default: Pα = 10000), which
determines how quicky you start to rise in Prestige Levels. Once your Prestige Score
reaches that value, your Prestige Level would go from 1 to 2.

However, using this approach your Prestige Score would only depend logarithmically
on the Prestige Scores of others. To get a linear dependence, either Prestige Levels
would need to depend linearly on Prestige Scores, or the factor PΛ(i) in the modified
Prestige Formula would need to be replaced by 2PΛ(i). In the first case, the Prestige
update cascades would be more frequent and would require more computation, and in
the second case there would be unreasonably large jumps (doublings) in Prestige Scores
once the Prestige Level of a user increases.

Part VI.
Prestige Guided Applications (PGAs)

Having a positive reputation index like Prestige is good in itself, but such an index
can also be used for further purposes. This part presents some potentially promising
applications:

1. Electronic Currency Distribution Funds (ECDFs), which pay out money in
an electronic currency to the users or one or more QPNs in proportion to their
Prestige Scores.

2. Fluido, the native currency that has been developed as natural complement to the
Prestige index. It works similarly to an Electronic Currency Distribution Fund,
but has some unique advantages.

3. Prestige Poll Applications (PPAs) which could be seen as generalization of
conventional polls, as they allow users to set up a whole preference distribution
instead of simple votes for a single option. The strength of votes may depend
on one or more Prestige indexes. But a PPA can also work as a stand-alone
application.

Usually, a PGA depends on the data of one or more QPNs. The only data that should
be accessible from the outside on a QPN for that purpose is the the Prestige Scores,
Trust Levels, and Trust Factors of each user. Everything else should stay within the
QPN unless a user explicitly wants to share more data.

7. Electronic Currency Distribution Funds (ECDFs)

Of course, an ECDF needs an electronic currency. Currently, the archetype for such a
currency is Bitcoin. For this kind of PGA it doesn’t really matter which currency is

26

chosen. So, we are dealing with a generic electronic currency which we call X - the unit
of X shall also be called X.

What is an ECDF good for? It’s easier to understand that once you know how it
actually works. The answer to the previous question is therefore given after the technical
description of the ECDF.

7.1. How does an ECDF work?

An ECDF needs to be coupled to one or more QPNs. The situation with only a single
QPN is easy: The Prestige Scores of that QPN are used. When using more than one
QPN, the ECDF needs a compound index called Pc which is based on the Prestige indexes
P1, . . . ,Pn of n different QPNs. Each Prestige index gets a Weight wj which determines
as how important that single Prestige index is seen as compared to the others. There’s
also an optional scaling factor ω for which the most natural choise is simply the sum of
all wjs. The default compound Prestige index is then:

Pc =
1

ω

n∑
j=1

wjPj.

Of course, it’s also possible to define a different compound Prestige index, which can be
any real, non-negative function f of the individual Prestige indexes:

Pc = f(P1, . . . ,Pn).

Another complication when using different Prestige indexes is that users have to create
a separate account for the ECDF which links all their Prestige Scores (Scores which aren’t
linked to the ECDF account are 0 by default). When there’s only one QPN the users
can simply use their QPN account.

Each ECDF of course needs a fund of X, which is simply called the X-Fund. The
question how the X-Fund is filled up with X is answered in the next subsection. For
now, let’s see how it is paid out to the users of the ECDF.

A X-Fund payout occurs regularly every d days (default: d = 30) or whenever an
ECDF admin decides it’s payout time. How much is paid out every time in total? There
are several different options for the payout amount α:

1. A fixed amount αF .

2. A fixed percentage πF of all the X in the Fund.

3. A percentage π′F of the difference between the current amount of X in the Fund
and the amount that was there directly before the last payout.

4. A percentage π∗F of all the X above a certain Saving Amount σF .

27

The next thing to think about is whether there should be a basic income βi for
each generic user i or not. The sum of all basic incomes of all K users is denoted by
β̂ =

∑K
i=1 βi. If α ≤ β̂, then each user gets a payout of

αi = βi ·
α

β̂
.

Otherwise the payout is:

αi = βi + (α− β̂) · Pc(i)∑K
k=1 Pc(k)

.

The whole point of an ECDF is that payouts depend on Prestige Scores. This serves to
implement a kind of meritocracy. At least it’s an extension of the general QPN rewarding
system.

7.2. Who pays for the Fund and what is it good for?

It could be that you have a large amount of money you want to give away for whatever
reason. Then you could set up an ECDF to distribute that money. Otherwise it is
assumed that there is some kind of income stream which fills the ECDF, or even several
different income streams. Of what nature could such income streams be?

• Donations to the organization managing the ECDF.

• A part of the profits of a company.

• Revenues from financial products the ECDF manager(s) invest in. This point
could be seen as part of the previous one however.

In each case the question which incentives exist for paying into an ECDF arises. Let’s
begin with possible incentives for donations to an ECDF:

• An ECDF is innovative and cool. Donation to it means that you are associated
with innovation and coolness.

• Paying into an ECDF means supporting a community. That potentially brings
prestige, or even P.

• If you are a beneficiary of the ECDF eventually you might even get more X back
from the ECDF than you donate to it, if your donations cause a sufficient rise of
your P. Of course, if that’s your only motivation to donate to the ECDF, and
other think alike, it may degenerate into a Ponzi scheme.

• It’s easier to donate to an ECDF than to all beneficiaries of the ECDF directly.

• If the ECDF managing organization is a non-profit donations might be tax-deductible.

28

• The distribution of X in an ECDF depends on the democratic processes in one or
more QPNs. This may be interpreted as crowdsourced meritocracy.

Why could it be useful for a company to invest into an ECDF?

• An ECDF is a convenient bonus payment system.

• It also has the potential to be the only payment system you need to implement!

• The size of the bonuses paid out through the ECDF is determined by the users of
the linked QPNs. That’s simply a bottom-up worker evaluation which may reduce
the workload of management and human resources departments.

• ECDFs may be used to reward external collaborators or even customers, if they
are part of a potentially external QPN that is associated with your company.

8. Fluido Currencies (FCAs)

The native electronic currency that fits Prestige best is the Fluido (F). A Fluido Cur-
rency PGA is simply called a Fluido Currency Application (FCA) and it implements
a Fluido Currency which is based on one or more QPNs. In the case of K > 1 QPNs, a
compound Prestige Score PC =

∑K
k=1 Pk is used, just as in the ECDF case. For brevity’s

sake we call the compund Prestige Score simply P.
While a FCA has some similarities to an ECDF, it works quite differently as there is

no central F-Fund at all! Every single F is created directly in the account of a user in
propotion to her P. Nobody has to pay into the system. The whole basis of the FCA is
P.

There are two different systems for F creation, a discrete and a continuous one. In the
discrete system F is created regularly after a fixed time interval, for example 24 hours.
Whereas, in the continuous system F is created continuously all the time, like a river
flows into the sea continuously all the time. So, in the continuous system you would get
more and more F every microsecond, if you have some P.

While the discrete system could be implemented it has some disadvantages compared
to the continuous one, but it is used to motivate the continuous system.

8.1. The discrete system

The basic idea is simple: The amount of P you have equals your annual income in F.
If you want to get Fluido more often, say every day, you would get P(i)

365
Fluido as daily

income (P(i) is your Prestige Score, as you are the user with the generic ID i). So far,
so easy. A problem of this scheme is that it is rather inflationary, as more and more
money is produced all the time. To counter this effect, you first need to understand the
principle of demurrage.

29

8.1.1. Demurrage

Demurrage is like a tax on having money in a certain currency. A currency with demur-
rage is devalued regularly, which means that the amount of money is reduced system-
atically, and not due to the relation between the amount of money in circulation and
the amount of available goods and services. One possible way to implement demurrage
is to require owners of a currency to pay a fee of some percentage of the value of their
banknotes. For example, the Chiemgauer is a local currency with demurrage, and to
maintain the validity of a Chiemgauer banknote you have to pay 2 % of the value of that
banknote every three months. Demurrage is a tool that is supposed to prevent hoarding
and increase the circulation speed of money. I think that historically demurrage wasn’t
very popular, because it’s more convenient to get the same effect with inflation.

In Prestige Fluido there is a similar mechanism. In the discrete system with uncondi-
tional demurrage, the amount of Fluido on your account is reduced by a certain fraction
regularly. This fraction is the demurrage factor δ (default: δ = 5%) per year. It
works like a negative interest rate of −5% in the default case. The reasoning behind the
default value of 5% per year is that this is about the maximum of the global growth in
GDP during the last 35 years. At least for a normal currency the idea is that hoarding
money becomes unattractive if the demurrage fee is higher than the economic growth
rate.

First your Fluido Count F(i) is devalued and then you get more Fluido in proportion
to your Prestige Score. (It would be possible to exchange the order and first create
Fluido and then devalue everything, even the freshly created Fluido, but that system
would make less sense.)

To see how the demurrage works out in a FCA, let’s assume for simplicity that you
have a fixed Prestige Score P(i), that your F is devalued only at the end of every
year by 5%, and that it stays idle on your account all the time. In the first year
there would be F0

1(i) = P(i) Fluido on your account, because Prestige basically is your
yearly income in Fluido (at least if you don’t have Fluido yet) and F is created exactly
at the beginning of the year. If we set δ = 0.05 and define the remanence factor
% := 1 − δ = 0.95 (which tells you what fraction of your Fluido will remain with you
after a year if your Prestige is 0), then at the beginning of the second year, you would
have F0

2(i) = P(i) + % ·P(i) = (1 + %)P(i) Fluido. In the beginning of the third year your
Fluido count would be

F0
3(i) = %(1 + %)P(i) + P(i) = (1 + %+ %2)P(i).

And in the beginning of the fourth year:

F0
4(i) = %(1 + %+ %2)P(i) + P(i) = (1 + %+ %2 + %3)P(i)

It’s easy to see how this goes on. You always add another %Y−1P(i), where Y is the year
at whose begining you check your account. This is known as finite geometric series and
there’s a nice formula for it. At the begining of the n-th year the amount of Fluido on
your account would be

F0
n(i) =

∑n−1
j=0 %

jP(i) = 1−%n
1−% P(i) = 1−%n

δ
P(i) = 20 · (1− (0.95)n)P(i)

30

As n goes to infinity this converges to

F0
∞(i) =

1

δ
P(i) =

1

0.05
P(i) = 20P(i)

Here’s a table with the values of Fn(i) in multiples of P(i):

Year 1 2 3 4 5 6 7 8 9 10
F0
n(i)
P(i)

1 1.95 2.85 3.71 4.52 5.30 6.03 6.73 7.40 8.03

Year 15 20 25 30 40 50 75 100
F0
n(i)
P(i)

10.73 12.83 14.45 15.71 17.43 18.46 19.57 19.88

8.1.2. Evaporation

Actually, the real discrete system for a FCA doesn’t use demurrage exactly as described
above, but rather uses a conditional system of demurrage which I call Evaporation.

You may have up to σP(i) (default: σP(i) = 5 for all i) times your Prestige Score P(i)
(as always you are the generic user with the generic ID i) in Fluido on your account
without losing anything due to demurrage. Conditional demurrage is only applied to
the amount of Fluido that’s above σP(i) times your Prestige Score in Fluido. So, if we
stay in the default case and you have 10P(i) Fluido on your account, the first 5P(i) of
them are safe and the 5% default evaporation only applies to the other 5P(i), so there’s
an effective Annual Evaporation Rate of only 2.5%. And if you somehow manage to
have exactly 25P(i) Fluido you your account, your effective annual evaporation rate is

20 · 0.05

25
=

1

25
= 0.04 = 4%,

which exactly eats up 25 · 0.04P(i) = 1P(i) Fluido, so no new F is generated in your
account, but effectively you also lose nothing. The amount F(i) of F on your account
only decreases due to evaporation if you have more than 25P(i) F. In terms of system
contants the critical value at which F(i) remains stationary is

F∞(i) =

(
σP(i) +

1

δ

)
P(i) = σP(i)P(i) + F0

∞(i).

With evaporation, the formula for Fn(i) if your Prestige doesn’t change and you remain
inactive is slightly more complicated. We assume that σP(i) is an integer.

Fn(i) =

{
nP(i) , if n ≤ σP(i)

σP(i)P(i) + 1−%n−σP(i)

δ
P(i) = σP(i)P(i) + F0

n−σP(i)(i) , if n ≥ σP(i)

This time the exponent is n − σP(i), because evaporation only starts σP(i) years after
the first year.

31

Here’s the table with the values of Fn(i) in multiples of P(i) for this situation and
using default values:

Year 1 2 3 4 5 6 7 8 9 10
Fn(i)
P(i)

1 2 3 4 5 6 6.95 7.85 8.71 9.52

Year 15 20 25 30 40 50 75 100
Fn(i)
P(i)

13.03 15.73 17.83 19.45 21.68 23.01 24.45 24.85

8.1.3. Adjusting the timescale

Actually using a timescale of a whole year for the discrete system is far too long, because
Prestige changes much faster than that. If you want to change the timescale to a 1

m
th

of a year, you need to replace the demurrage factor % with %′, where

%′m = %, so %′ = m
√
%.

Because in one mth of a year, you only get one mth of your Prestige Score P(i) in Fluido,
the Fluido formula for the system with unconditional demurrage then becomes:

F0
n(i) =

∑n−1
j=0 %

′j 1
m
P(i) = 1−%′n

1−%′
1
m
P(i) ,

where n denotes the nth mth fraction of a year.
The Fluido formula for the system with Evaporation becomes:

Fn(i) =

n
m
P(i) , if n ≤ mσP(i)

σP(i)P(i) + 1−%′n−(mσP(i))

1−%′
1
m
P(i) , if n ≥ mσP(i)

= σP(i)P(i) + F0
n−mσP(i)(i)

8.1.4. Problems of the discrete system

Whenever the time comes that the demurrage fee is applied, there’s an incentive to get
rid of as many of your F which exceed σP(i)P(i) as possible (in order to minimze your
losses from demurrage). One of the most obvious ways to do that is to sell some of
your Fluido. But shortly before the devaluation happens, the demand for Fluido is low,
because buyers probably know that they will soon lose a fraction of the Fluido they
want to buy. This effect creates unnecessary fluctuations of the Fluido exchange rates.
And it’s also a general inconvenience for buyers and sellers, because the discrete model
incentivizes unnecessary tactical Fluido trading, which is mostly just a waste of time
and effort.

Using the discrete model is also problematic, because the same time that the demur-
rage fee is applied (and only at that time) the Prestige Scores become active by creating
new Fluido. So, if you are unlucky and have a low Prestige Score just at that time, it
doesn’t help you if you have a higher Prestige Score at other times.

32

Minimizing those problems by changing the timescale to minutes, seconds, or even
milliseconds would enforce unneccesarily frequent updates of all Fluido Counts, while
still not solving the above problems completely.

The ideal solution is to update the Fluido Count just in time when a relevant Fluido
transaction happens. But that’s best done with a . . .

8.2. Continuous system

In this system Fluido is generated continuously. Regardless how recently you checked
your Fluido Count the last time, it always changes (that is if you have a suitable amount
of Prestige). This system is mathematically more complicated than the discrete case,
but it makes more sense and has less problems.

8.2.1. Getting to the basic temporary Fluido formula

Remember, Fluido is first devaluated and then created by Prestige. So, what happens
within a small time interval ∆t (sufficiently small, so that your Prestige Score doesn’t
change and there are no external Fluido transactions happen), if you start with a Fluido
count F(i)(t)? First of all, let’s abbreviate F(i) with F for convenience. For the begin-
ning, let’s consider the case with unconditional demurrage. First, that amount reduced
to a certain fraction φ(∆t), and then a small amount of new Fluido a∆t is created:

F (t+ ∆t) = φ(∆t)F (t) + a∆t.

Dividing by ∆t leads to
F (t+ ∆t)

∆t
=
φ(∆t)

∆t
F (t) + a.

If ∆t goes to 0, this becomes

F ′(t) = lim
∆t→0

F (t+ ∆t)

∆t
= φ′(0)F (t) + a,

where φ′(0) is just a simple constant, which we can abbreviate with b, so we get the
ordinary differential equation

F ′(t) = bF (t) + a.

The general solution of this ODE is

F (t) = cebt − a

b
,

where c is just a simple constant and e is Euler’s contant (e = 2.71828...). That this
function is actually a solution can be verified easily by differentiating it:

F ′(t) = bcebt = b
(
cebt − a

b
+
a

b

)
= b

(
F (t) +

a

b

)
= bF (t) + a.

33

Now, what are the right constants a, b and c? Let’s do that by comparing this function
with the discrete case. If t goes to infinity, F (t) ought to go to

F∞ := F0
∞(i) =

1

1− %
P(i)

But if b was positive, the exponential term ebt would go to infinity, so b must be negative.
Therefore, the exponential term goes to 0 and we get:

lim
t→∞

F (t) = −a
b

= F∞.

If we start with F0 Fluido at t = 0, we get

F0 = F (0) = c− a

b
= c+ F∞,

so c = F0 − F∞. With this, we can capture an intermediate result:

F (t) = cebt − a

b
= (F0 − F∞)ebt + F∞

For F0 = F∞ this means F (t) = F∞ for all t ≥ 0.
In order to find out what ebt is, we now consider the case F0 6= F∞. As timescale we
chose a year, so after a year we would have %F0 + P(i) Fluido, as P(i) is the amount of
F that are generated every year:

%F0 + P(i) = F (1) = (F0 − F∞)eb + F∞.

From the definition of F∞ we get P(i) = (1− %)F∞, so we have:

%F0 + (1− %)F∞ − F∞ = (F0 − F∞)eb,

which simplifies to
%(F0 − F∞) = (F0 − F∞)eb.

Because we have F0 6= F∞, we can divide by F0−F∞, which provides the simple equation:

eb = %,

from which we get
ebt = (eb)t = %t.

Thus, we can write the Fluido formula in ”limit form“ for the case with unconditional
demurrage:

F (t) = (F0 − F∞)%t + F∞.

Essentially, this formula means that the difference between F (t) and F∞ decreases ex-
ponentially - no matter whether F0 > F∞ or F0 < F∞! For F0 > F∞ this actually means
that F (t) is decreasing over time. If F0 = F∞, then we simply get F (t) = F∞ for all
t ≥ 0, in accordance with our previous observation.

34

Remember that F∞ is nothing else than P
1−% , so we can express the Fluido formula in

dependence of P:

F (t) =

(
F0 −

P
1− %

)
%t +

P
1− %

= F0%
t +

1− %t

1− %
P.

Therefore, we get the Fluido formula in ”Prestige form“:

F (t) = F0%
t + 1−%t

1−% P.

Note that the factor 1−%t
1−% is always positive, so if we replace P with P̄ > P we get a

modified function F̄ (t):

F̄ (t) = F0%
t +

1− %t

1− %
P̄ > F0%

t +
1− %t

1− %
P = F (t), for all t ≥ 0

This simply means that it is always a good idea to increase P, no matter whether we
are dealing with increasing or decreasing functions F (t), respectively F̄ (t)!
Formally, F (t) can be seen as continuous (even smooth) function of P, but that view
could be misleading, because F (t) was computed assuming that P remains fixed for all
t ≥ 0. In reality, P will change over time, but when we compute F (t), we need a constant
P.

8.2.2. The basic global Fluido formula

What happens when P actually changes at different times? If there are times t0 =
0, t1, t2, . . . , tn at which P changes and we have constant Prestige scores PI0 for t0 ≤
t < t1, PI1 for t1 ≤ t < t2, PI2 for t2 ≤ t < t3, and so on, we use different Fluido
functions FIj(t) for the different time intervalls Ij = [tj, tj+1[(where tj ≤ t < tj+1 and
j = 0, . . . , n). We can set tn+1 =∞ if we assume that tj is the last time that the Prestige
score ever changes. The first function is the original Fluido function up to the time t1:

FI0(t) = F (t) = F0%
t +

1− %t

1− %
PI0 , where t0 ≤ t < t1

At t1 we compute the current Fluido count as

Ft1 := FI0(t1) := lim
t→t1

FI0(t) = F0%
t1 +

1− %t1
1− %

PI0

and start with that value in the next function

FI1(t) = Ft1%
t−t1 +

1− %t−t1
1− %

PI1 , where t1 ≤ t < t2.

It is actually necessary to effectively “reset” the starting time for FI1 to 0 by replacing t
with t− t1, because otherwise the function FI1(t) would “assume” that we have started

35

with Ft1 and PI1 at t = 0, which would be pretty wrong!
At t2 we compute the next Fluido count as

Ft2 := FI1(t2) := lim
t→t2

FI1(t) = Ft1%
t2−t1 +

1− %t2−t1
1− %

PI1

and start with that value in the function FI2(t). The general procedure should be clear
now. We set

FIj(t) = Ftj%
t−tj +

1− %t−tj
1− %

PIj , where tj ≤ t < tj+1,

and

Ftj := FIj−1
(tj) := lim

t→tj
FI1(t) = Ftj−1

%tj−tj−1 +
1− %tj−tj−1

1− %
PIj−1

, for j = 1, . . . , n.

These functions defined on intervalls agree in their endpoints, so we get a continuous
total Fluido function defined as

F(t) = FIj(t), if tj ≤ t < tj+1.

This is the basic global Fluido formula. We have set up the functions FIj(t) in “Prestige
form”, because their Prestige dependence is obvious in that form. However, it is possible
to write them in “Limit form”. In general, the “Limit form“ has the advantage that it
makes understanding how the function develops over time much easier, because t only
appears in one place in the ”Limit form“, whereas it appears in multiple places in the
”Prestige form“. That’s why, from now on, we will only use the ”Limit form“.

Because now we are dealing with variable Prestige scores, we are actually dealing with
a piecewise contant function P(t) where the constants PIj are the different values of P(t)
on the different time intervals Ij. This can be written as

P|Ij(t) ≡ PIj ,

where P|Ij(t) is the restriction of the function P(t) onto the interval Ij.

Now that we are dealing with time dependent Prestige scores, the Fluido limit F∞,
due to its dependence on P, also becomes a time dependend function F∞(t). Like
the function P(t), the function F∞(t) is piecewise constant. Therefore, we can define
temporary Fluido limits on the different time intervals Ij as

F∞|Ij := F∞|Ij(t) =
1

1− %
P|Ij(t) =

1

1− %
PIj .

By using that equation, we can write the functions FIj(t) in “Limit form”:

FIj(t) = Ftj%
t−tj + (1− %t−tj)F∞|Ij = (Ftj − F∞|Ij)%t−tj + F∞|Ij , where tj ≤ t < tj+1,

36

and
Ftj =

(
Ftj−1

− F∞|Itj−1

)
%tj−tj−1 + F∞|Itj−1

.

Summing it up, we get the basic global Fluido formula in “Limit form”:

F(t) = (Ftj − F∞|Ij)%t−tj + F∞|Ij , if tj ≤ t < tj+1

F∞|Ij = 1
1−%PIj ≡

1
1−%P(t), for tj ≤ t < tj+1,

Ftj =
(
Ftj−1

− F∞|Itj−1

)
%tj−tj−1 + F∞|Itj−1

, for j = 0, . . . , n

8.2.3. Fluido computation with evaporation

For the system with evaporation it is convenient to split the problem into two parts:
First, determine whether F0 < σP. Then, if the answer is yes, apply linear growth with
P as inclination. And if the answer is no, then we use the standard Fluido formula with
F∞ replaced with

F σ
∞ := F∞ + σP,

because the safe amount σP is added to the Fluido amount F (t) − σP that is prone to
evaporation and converges to F∞.

If F0 < σP and as long as F (t) < σP use
F (t) = F0 + Pt
Otherwise use
F (t) = (F0 − F σ

∞)%t + F σ
∞, where F σ

∞ = F∞ + σP

How does the last equation look in “Prestige form”?

F (t) =

(
F0 −

P
1− %

− σP
)
%t +

P
1− %

+ σP = F0%
t +

1− %t

1− %
P + (1− %t)σP

Unfortunately, this formula doesn’t grant us any new significant information, so let’s
not bother with the “Prestige form” anymore.

8.2.4. Continuous Fluido transfer: Inflows and Outflows

It’s possible to move Fluido from one account to another instantly, but the continuous
system opens up a new option: Transfering Fluido continuously! An incoming continuous
Fluido transfer from another user is called Inflow, and an outgoing continuous Fluido
transfer to another user is called Outflow.

Quite surprisingly, it is rather simple to implement this into the continuous system.
For that purpose you need to consider that an Inflow just works like the continuous
generation of Fluido by Prestige. For example, if you have 1000 P and an inflow of 500
F per year, for the FCA that’s the same as if you had 1500 P - with the difference that
the Inflow doesn’t increase your safe amount σP of Fluido which don’t evaporate. Since
an Inflow behaves partially like real Prestige, the 500 F you get per year count as Flow
Prestige P̃ = 500, which is added to your Real Prestige P = 1000 to get an Effective
Prestige P̂ = P + P̃ = 1500.

37

Therefore, the Fluido fomula above already respects Inflows and Outflows (which
count as negative Prestige), if you replace P with P̂, and F σ

∞ with

F̂ σ
∞ =

1

1− %
P̂ + σP =

1

1− %
(P + P̃) + σP.

Note that the safe amount σP is still computed with the Real Prestige value P.
However, something new happens here: It is possible to spend more F with Outflows

than are generated by your Prestige and Inflows together. So, it is necessary to check
whether you are still over the safe amount σP. Also, once your Fluido Count falls to 0,
all your Outflows are stopped automatically, because having a negative amount of F is
not allowed.

Finally, the Fluido computation formulas which also implement inflows and outflows
are:

If 0 ≤ F0 < σP and as long as 0 ≤ F (t) < σP use

F (t) = F0 + P̂t
If F0 ≥ σP and as long as F (t) ≥ σP use

F (t) = (F0 − F̂ σ
∞)%t + F̂ σ

∞.

8.2.5. Event times

What makes the last formulas a bit problematic is the clause “and as long as”, because
they imply that the system should keep track about the current Fluido count F (t) at
all times. But that is neither practical, nor necessary. Instead, the system relies on
Event times, which are Transaction times or Threshold times.Transaction times
are the times at which the (effective) Prestige score changes, or at which a discrete
Fluido transfer happens, meaning that Fluido are transferred all at once, rather than
continuously. Let’s denote the different Transaction times with T0 = 0, . . . , Tn, with n
being the number of Transactions that happened so far (at t = 0 nothing really happens).

Threshold times are the times at which the momentary Fluido count F (t) actually
reaches one of the two thresholds 0 or σP. There are three cases in which that can
happen:

1. Your Fluido count F (t) is below σP and your effective Prestige P̂ is positive. The
Threshold time τ is defined as the time when F (t) reaches σP: F (τ) = σP.

2. Your Fluido count F (t) is below σP and your effective Prestige P̂ is negative. The
Threshold time τ is defined as the time when F (t) reaches 0: F (τ) = 0.

3. Your Fluido count F (t) is above σP and your effective Prestige P̂ is negative. The
Threshold time τ is defined as the time when F (t) reaches σP: F (τ) = σP.

Let’s compute τ in each of those cases, first using the temporary Prestige formulas (thus
assuming that P̂ doesn’t change and no discrete Fluido transfer happens until the time
τ is reached. Keep in mind that if F (t) < σP we use the linear formula F (t) = F0 + P̂t
and when F (t) ≥ σP we use the exponential formula F (t) = (F0 − F̂ σ

∞)%t + F̂ σ
∞.

38

1.
σP = F (τ) = F0 + P̂τ

⇔ τ = σP−F0

P̂

Note that division by P̂ is allowed, because P̂ > 0. Furthermore, the enumerator
on the right is positive, because F0 < σP.

2.
0 = F (τ) = F0 + P̂τ

⇔ τ = −F0

P̂

In this case, τ is positive, because P̂ is negative!

3. First, we note that F0 − F̂ σ
∞ is positive, because F0 − σP > 0 and P̂ < 0:

F0 − F̂ σ
∞ = F0 −

1

1− %
P̂− σP >

1

1− %
P̂ > 0

Second, it is the case that σP − F̂ σ
∞ is positive, also because P̂ < 0:

σP − F̂ σ
∞ = σP −

1

1− %
P̂− σP = − 1

1− %
P̂ > 0

Next, we need to know that %τ can be written as exp(ln(%τ)), where exp is the
exponential function t 7→ et (e being Euler’s constant) and ln is the natural loga-
rithm (the logarithm to the base e). The functions exp and ln are inverses of each
other. With this in mind, we can finally compute τ :

σP = F (τ) = (F0 − F̂ σ
∞)%τ + F̂ σ

∞
⇔ σP − F̂ σ

∞ = (F0 − F̂ σ
∞) exp(ln(%τ))

⇔ σP−F̂σ∞
F0−F̂σ∞

= exp(τ ln(%))

⇔ ln
(
σP−F̂σ∞
F0−F̂σ∞

)
= τ ln(%)

⇔ τ = 1
ln(%)

ln
(
σP−F̂σ∞
F0−F̂σ∞

)
Here, the fraction 1

ln(%)
is a negative system constant, because % < 1. The fraction

in the second ln term is positive, but smaller than 1, because σP < F0. Therefore,
the second ln term is also negative, which makes τ a positive number.

In reality, we can’t assume that P̂ doesn’t change or no discrete Fluido transfer happens
before τ is actually reached, so we need to be careful. Actually dealing with the next
expected Threshold time, which we emphasize by writing τe instead of τ . Also, we need
to know how the functions in the global version look like. First of all, we need to make
sense of how the Event times t0, t1, . . . work. Assume that the last Event time was
tn, the last Transaction time was Tk, and there will be a next Transaction time Tk+1.
If tn + τe < Tk+1, then the next Event time is actually tn+1 = τe. Otherwise, it is
tn+1 = Tk+1.

To get the correct formulas for τe in the three different cases above, we simply need
to replace a few letters:

39

• F0 needs to be replaced with Ftn , the amount of Fluido at the time tn.

• P needs to be replaced with P̂In , where In is the time interval [tn, tn+1[. So, P̂In is
the effective Prestige score during the current time interval.

• σP needs to replaced with
σn := σPIn .

• F∞ needs to be replaced with F̂ σ
∞|In , the temporary Fluido limit during the time

interval In:

F̂ σ
∞|In =

1

1− %
P̂In + σn

• In each case, the time tn needs to be added, since we usually don’t start at t0 = 0,
but at tn.

So, we can compute the next expected Threshold time τe:

τe =

σn−Ftn

P̂In
+ tn , if Fn < σn and P̂In > 0

−Ftn
P̂In

+ tn , if Fn < σn and P̂In < 0

1
ln(%)

ln
(
σn−F̂σ∞|In
Ftn−F̂σ∞|In

)
+ tn , if Fn ≥ σn and P̂In < 0

8.2.6. Final Fluido formulas

For tn ≤ t < tn+1 :

F(t) =

{
Ftn + P̂In · (t− tn) , if Ftn < σn
(Ftn − F̂ σ

∞|In)%t−tn + F̂ σ
∞|In , if Ftn ≥ σn

F̂ σ
∞|In = 1

1−% P̂In + σn

Ftn =

{
Ftn−1 + P̂In−1 · (tn − tn−1) , if Ftn−1 < σn−1(
Ftn−1 − F̂ σ

∞|In−1

)
%tn−tn−1 + F̂ σ

∞|In−1 , if Ftn−1 ≥ σn−1

9. Prestige Polls

A Prestige Poll Application (PPA) is a PGA that makes it possible for the users
of one or more QPNs to create and participate in polls. As in other PGAs a compund
Prestige Score PC is used, and it’s again abbreviated by P. In a PPA users can create
four different types of polls:

1. Simple Polls (SPs): A normal poll in which users can choose exactly one option.

For each option the number of votes is added up to show the result.

2. Checkbox Polls (CPs): Users need to click on checkboxes to signal their agreement
to certain options.

As with the SPs the number of votes is added up in the end.

40

3. Allocation Polls (APs): By default users have a certain number ν of Voting Points
(VPs) (default: ν = 6000) they can allocate to different options. Like in the with
Esteem allocation, also fractions of VPs are allowed. Also, users can choose a
different number ν(i) of VPs for themselves. Actually only the fraction of VPs a
user gives to an option counts, so you can’t cheat by increasing the number of VPs
you have.

For scoring we assume that there are K options, N users and that the number of
VPs the user i allocates to a option k is denoted by vk(i). The score of option k is
then

Sk =
N∑
i=1

vk(i)

ν(i)
ν.

4. Prestige Polls (PPs): This one works like a normal poll with the difference that
the vote of a user is weighted with her Prestige Score P(i).

The option k has the score:

Sk =
N∑
i=1

χk(i)P(i),

where χk(i) is 1 if user i voted for option k and 0 otherwise.

5. Allocation Prestige Polls (APPs): It’s the natural combination of APs and PPs.
Again, users have their number ν(i) of VPs, which get normed to ν anyway for
the computation. They allocate their VPs to the different options and their votes
are weighted with their Prestige Scores.

Scoring works similarly to the AP case, but is weighted with Prestige Scores (the
factor ν is not in this formula in order to get reasonably small scores):

Sk =
N∑
i=1

vk(i)

ν(i)
P(i).

Part VII.
User Interface

A reasonable user interface of a QPN should have the following elements:

• The User List, which displays all users, their Prestige Scores and Trust Levels. It
should also display User Circles and Splitters with their collective Prestige Scores.
Should be sortable with respect to names, Prestige Scores, and Trust Levels.

• An Esteem Table for each user, which serves for allocating EPs to selected users.

41

• A Profile for each user.

• Settings for each user. With the possibility to change privacy default options.

• The Messaging System which contains Notifications and allows for sending IMs to
selected users. Notifications can be Global Notifications by the QPN admins, or
Action Notifications which users can broadcast within a Channel they can set up
for themselves and other users they invite into that Channel. Users get Action
Notifications if they are subscribed to the Channels in which the Notification is
broadcasted.

Part VIII.
Appendix

A. Reasoning behind reputation economies

Classically, in economics there is a distinction between physical goods and intangible
services. In our digital age this simple distinction is too coarse. A third category of
goods needs to be considered: Digital goods. These digital goods can be defined
as objects which can be copied and distributed for a negligible cost. This attribute
distinguishes them from physical goods and services. Some examples of digital goods
are:

• Software

• Patents

• Texts saved in digital form, e.g. ebooks, scanned and digitized books, static web-
pages, scientific papers

• Audiobooks

• Music

• Photos, graphics and images

• Videos

• Objects in virtual worlds

• Digital data in general

• Genetic codes

42

Treating digital goods either as material goods or as services is inappropriate and
creates serious problems.

What’s the reason for these problems? In our current economic system the replication
and distribution of digital goods often is severely restricted. That’s rather bad from
the consumers’ perspective. However, distributing digital goods for free is an economic
model that looks problematic for producers, as they need to invest work and possibly
money to create their goods in the first place. They still can make quite a profit if
they sell services and material goods for which the free ditital goods act as promotion.
Nevertheless, adding those complementary goods and services requires a lot of additional
effort and money. This makes it very difficult to invest a lot of time into creating digital
goods. It can be argued that this represents a significant loss for the vast majority of
consumers.

Theoretically, a donation economy could fix that problem. Producers would create
digital goods, give them away for free, and get rewarded with donations. In reality,
this concept doesn’t work out very well, as donating is not an overly popular form of
payment. Schemes in which consumers are free to decide about the price they want
to pay for a digital product on their own (with the possibility of paying a price of 0)
look more promising - even if the difference is only psychological. So, that’s a relatively
good system, but there’s still the fact that paying for something is usually irreversible,
unless there’s a money-back guarantee. Now let’s assume you pay for a product that you
thought was rather good, but disappointed you somewhat, but not enough to demand
your money back. You rather feel like it would be appropriate to demand half of the
price back, because the product’s not terribly bad after all. Actually doing so would feel
rather awkward in the current system. After all, you paid for a product freely and it’s
not broken - you just didn’t know in advance that it would disappoint your hopes.

What’s the solution here? Paying for a product what you want and also having a
“get x% of your money back, where you choose freely what x is”-guarantee? Indeed,
in very many cases that would be a pretty good solution (at least for the customers).
Nevertheless, as nice as this sounds, it would be cumbersome to implement such a
solution for all kinds of digital products. If you wanted to get really serious with it,
you’d need to include a payment plug-in into every text you write, every photo you
take, every video you make, and every line of code you type. Apart from being technical
overkill, it would also be annoying and somewhat detrimental to the experience and
enjoyment of the product itself.

If you pay for a product that’s available for free, you actually want to reward the cre-
ator(s) of that product and not the product itself. So, it would be much more convenient
to implement a system that enables consumers to reward creators of digital products
without making the detour through the payment for a specific product. Since donations
aren’t the sexiest solution, something different is needed: A reputation system with
direct economic consequnces. And that’s what Quantified Prestige is.

With the Quantified Prestige system you simply reward people for the things they
do and create by increasing their Prestige score. Participants of the system who have a
high Prestige score get gratified with a high continuous income in the digital currency
Fluido. This currency works similarly to any other currency: You can trade it, you can

43

accumulate it, you can buy goods and services with it (if payment with Fluido is seen
as valid option).

So, Quantified Prestige is a system that couples positive reputation with money. This
opens up completely new possibilities: For example you can write an article and get
rewarded for it with Prestige (and indirectly also with Fluido) even though you didn’t
ask for payment or donations! How conventient is that? You’d only need a single
Quantified Prestige account.

Even though the primary motivation for the implementation of a system like Quanti-
fied Prestige was to make it easier to reward producers of digital goods, it isn’t restricted
to that purpose. By it’s hybrid nature it’s even more flexible and versatile than the cur-
rent forms of money. As Fluido behaves in many respects like a normal currency, it is
possible to buy regular goods and services with it, once the required infrastructure for
this kind of payment is in place. But it’s also possible to increase the regular income of
someone you like simply by increasing her Prestige Score. You can even transfer Fluido
to her continuously - not every year, or every month, or every day, but every second !
And it’s just as simple as transfering Fluido the regular way.

All these new options mean that Quantified Prestige represents the next level of
economy!

B. Possible issues of Quantified Prestige

B.1. Wealthy participants could simply buy Prestige

This would work by paying other participants for allocating EPs to you. Such Prestige
might be quite undeserved. But it’s difficult to distinguish illegitimate from legitimate
transactions. After all you would probably thank a friend for helping you out with finan-
cial problems. It’s reasonable that generous persons are rewarded with high Prestige.
So, where do you draw the line between these meaningful transactions and transaction
made only out of greed for Prestige? Helping others for selfish reasons might not be
ideal, but it still does some good after all.

If the user base really takes offense at a transaction that look like ”Prestige purchasing“
it can react by pointing out that issue. Then users would be free to reduce the EPs
they allocate to the buyer - or even the Prestige sellers. In extreme cases it might be
considered to ban participants who behave in an unethical way, so that they end up with
no Prestige at all.

B.2. Celebrities and widely popular persons are favored in this
system

Indeed, this is likely. However, it doesn’t need to be seen as problem. If someone is
popular, one could reason that he is good at satisfying a real desire, even if it’s not
a very noble desire, for example the desire for shallow entertainment. What are the
long-term consequences of not rewarding those who fulfill such desires? It’s hard to say.

44

Those desires would be harder to fulfill in that case. This would create an incentive to
seek other ways of keeping up a relatively high level of well-being. Those alternatives
could be healther, but they could also be less healthy. As humans tend to prefer easy
alternatives, I’d argue that it’s more likely that they’d switch to less healthy alternatives.

B.3. General popularity doesn’t mean that someone or something
is actually good

Sure, but neither do other methods guarantee that someone or something is actually
good. Quantified Prestige just adds an additional democratic layer to the economy. Of
course, there are other meaningful metrics to determine ”goodness“, but implement-
ing them into Quantified Prestige would distort the purpose of the system as tool for
expressing and rewarding popular esteem. And not using such a tool would only be
justified if it was shown that it does more bad than good.

B.4. This system could favor already wealthy persons

Quantified Prestige ought to favor persons who do good. If those wealthy persons which
are favored do good, then that’s fine. And if they don’t, it is to be expected that their
Prestige Scores would be relatively low.

B.5. Minorities could be discriminated against

That is, members of minorities might be less likely to get EPs from others, just because
they are members of that minority. Thus, minorities would have an unfair disadvantage.
Unfortunately, this is a real problem that can hardly be prevented. Nevertheless, it’s
possible to compensate for such biases by voluntary affirmative action, that is giving
members of minorities slightly more EPs than usual, because they are members of a
minority that gets discriminated against.

B.6. Multiple user accounts per person could distort Prestige
Scores

Yes, that’s a serious problem that could threaten the meaningfulness of Prestige and
Fluido. Therefore, it is justified to use very serious identity verification methods to
minimize the distortion coming from this problem. One possibility would be to send
an activation code by snail mail. Users without valid activation code would only have
restricted possibilities to grant Prestige to others. And there’s also the whole Native
Trust System to prevent multi-accounts from accumulating Prestige.

B.7. Fluido is just another ”fiat currency“ that’s backed by nothing

Fluido is not backed by tangible goods, but receives its value through its initial demo-
cratic legitimation as expression of popular esteem, and through its relative scarcity.

45

Even though Fluido is produced continuously, it doesn’t need to lose its value. Due to
Evaporation, the average maximum amount of F per person is limited to 25 times the
average Prestige Score in the default case. And the average Prestige Score per person
can never exceed 600000 when using default parameters. In any case, every currency
only has value because people think it has value. Having a high positive reputation is
generally seen as quite valuable. So, Prestige has a clear value as representation of pos-
itive reputation. Fluido can be seen as Prestige summed up over time. So, Fluido has
value as tradable accumulated manifestation of positive reputation. That’s something
that isn’t wholly true for classical currencies, because you don’t have to think highly
of someone you purchase a good or get a credit from, and vice versa. Consequently,
it is not true that classical currencies have a clear link to positive reputation. These
advantages of Fluido ought to be enough to be seen as valuable by lots of people.

C. Where do these ideas come from?

Even before I finished high school I was somewhat intrigued about the difference between
goods that can be replicated easily and those which can’t. It seemed quite artificial
to me that you need to pay a price for the former that resembles the price of usual
mass-produced goods, which is still relatively high when considering that you only buy
information which can be distributed for free. However, I didn’t see a good solution to
this issue.

It was only years later that I realized that a full-fledged reputation economy would
be a really elegant solution. People could produce and distribute digital products in
order to gain reputation, which could somehow be used to pay for all kinds of goods
and services. But I didn’t have a good idea how that would actually work. After I read
the science fiction novels Accelerando by Charles Stross and Down and Out in the
Magic Kingdom by Cory Doctorov I thought it would work roughly as pictured in
those stories. Unfortunately, those novels didn’t feature precise descriptions how their
reputation systems actually work.

In the meanwhile, I stumbled upon alternative concepts like basic income guarantees
and currencies with demurrage (the latter was an idea of the perhaps underappreciated
economist Silvio Gesell). When I started to think about how to implement a reputation
based economy, I noticed that these idea fit into my schemes quite naturally and easily
- actually my first idea was to apply the basic income and the demurrage directly to
the reputation score. My first ideas of a reputation economy only featured a reputation
index, but no additional digital currency. Only later on I realized that including a
currency that is generated by reputation would be much more practical than a reputation
score alone. I called that combined system Repo Fluido.

There were many different versions of Repo Fluido, as I always changed the system
once I noticed a major flaw. During the November of 2011 I worked a lot on developing
that system, so that it finally arrived in the first hypothetically usable form. The last
major change before I released the first version of the documentation was to call the
system Prestige Fluido (due to a comment that “Repo Fluido” sounds like a laxative),

46

because “Prestige” is a more positive and descriptive term than “Repo”, since reputation
can be positive as well as negative.

In 2012 I discussed my system with a few fellow transhumanists. Rüdiger Koch
suggested that I should combine Prestige with Bitcoin rather than with Fluido, because
using Bitcoin is an already established electronic currency, and a quite promising one.
Later on, I revamped the system to become more modular, so that a Prestige index can
be used to guide multiple different electronic currencies, and one electronic currency can
be guided by multiple Prestige indexes. Also, the need for implementing a Trust System
became apparent, because Rüdiger suggested to make the whole system decentralized.
The technical details of a decentralized system architecture for Quantified Prestige still
have to be resolved. Calling the system Quantified Prestige was also a reaction to
the new modular approach with the QPN as core element.

D. License

This documentation is distribiuted under a CC BY 4.0 license.

47

https://creativecommons.org/licenses/by/4.0/

	What is Quantified Prestige?
	What is Quantified Prestige good for?
	How does a Qualified Prestige Network work?
	A few comparisons
	Comparison between QP and budgets
	Comparison between QP and karma systems
	Comparison between QP and Klout

	Quantified Prestige Light
	Esteem
	Automatic EP Reallocation
	Simultaneous Automatic EP Reallocation

	Prestige
	Trust
	Prestige Computation

	Quantified Prestige - Full Version
	Esteem
	Default System
	Advanced System
	Subtypes of allocated EPs
	User Circles
	Splitters
	The general concept of an Allocator

	User defined Esteem Points
	The Esteem Matrix

	Trust
	Trust Scores, Trust Levels and Trust Factors
	The Native Trust System
	Top Trust
	Esteem Trust

	Using External Trust Systems

	Prestige
	Received Esteem Points
	Spread Factor
	How the Prestige Score is calculated
	Why your Prestige doesn’t depend on the Prestige Scores of your supporters directly.
	Prestige dependent Prestige computation

	Prestige Guided Applications (PGAs)
	Electronic Currency Distribution Funds (ECDFs)
	How does an ECDF work?
	Who pays for the Fund and what is it good for?

	Fluido Currencies (FCAs)
	The discrete system
	Demurrage
	Evaporation
	Adjusting the timescale
	Problems of the discrete system

	Continuous system
	Getting to the basic temporary Fluido formula
	The basic global Fluido formula
	Fluido computation with evaporation
	Continuous Fluido transfer: Inflows and Outflows
	Event times
	Final Fluido formulas

	Prestige Polls

	User Interface
	Appendix
	Reasoning behind reputation economies
	Possible issues of Quantified Prestige
	Wealthy participants could simply buy Prestige
	Celebrities and widely popular persons are favored in this system
	General popularity doesn't mean that someone or something is actually good
	This system could favor already wealthy persons
	Minorities could be discriminated against
	Multiple user accounts per person could distort Prestige Scores
	Fluido is just another ''fiat currency`` that's backed by nothing

	Where do these ideas come from?
	License

